The protein dendrite arborization and synapse maturation 1 (Dasm-1) is dispensable for dendrite arborization.
نویسندگان
چکیده
The development of a highly branched dendritic tree is essential for the establishment of functional neuronal connections. The evolutionarily conserved immunoglobulin superfamily member, the protein dendrite arborization and synapse maturation 1 (Dasm-1) is thought to play a critical role in dendrite formation of dissociated hippocampal neurons. RNA interference-mediated Dasm-1 knockdown was previously shown to impair dendrite, but not axonal, outgrowth and branching (S. H. Shi, D. N. Cox, D. Wang, L. Y. Jan, and Y. N. Jan, Proc. Natl. Acad. Sci. USA 101:13341-13345, 2004). Here, we report the generation and analysis of Dasm-1 null mice. We find that genetic ablation of Dasm-1 does not interfere with hippocampal dendrite growth and branching in vitro and in vivo. Moreover, the absence of Dasm-1 does not affect the modulation of dendritic outgrowth induced by brain-derived neurotrophic factor. Importantly, the previously observed impairment in dendrite growth after Dasm-1 knockdown is also observed when the Dasm-1 knockdown is performed in cultured hippocampal neurons from Dasm-1 null mice. These findings indicate that the dendrite arborization phenotype was caused by off-target effects and that Dasm-1 is dispensable for hippocampal dendrite arborization.
منابع مشابه
Control of dendrite arborization by an Ig family member, dendrite arborization and synapse maturation 1 (Dasm1).
Development of both dendrites and axons is important for the formation of neuronal circuits, because dendrites receive information and the axon is responsible for sending signals. In the past decade, extensive studies have revealed many molecules underlying axonal outgrowth and pathfinding. In contrast, much less is known about the molecular mechanisms that control dendrite development. Here we...
متن کاملDapper Antagonist of Catenin-1 (Dact1) contributes to dendrite arborization in forebrain cortical interneurons
In mice, genetically engineered knockout of the Dapper Antagonist of Catenin-1 (Dact1) locus, which encodes a scaffold protein involved in Wnt signaling, leads to decreased excitatory input formation on dendrites of developing forebrain neurons. We have previously demonstrated this in both (excitatory, glutamatergic) pyramidal neurons of the hippocampus and in (inhibitory GABAergic) interneuron...
متن کاملThe immunoglobulin family member dendrite arborization and synapse maturation 1 (Dasm1) controls excitatory synapse maturation.
In the developing mammalian brain, a large fraction of excitatory synapses initially contain only N-methyl-D-aspartate receptor and thus are "silent" at the resting membrane potential. As development progresses, synapses acquire alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors (AMPA-Rs). Although this maturation of excitatory synapses has been well characterized, the molecular...
متن کاملLiprinalpha1 degradation by calcium/calmodulin-dependent protein kinase II regulates LAR receptor tyrosine phosphatase distribution and dendrite development.
Neural activity regulates dendrite and synapse development, but the underlying molecular mechanisms are unclear. Ca(2+)/calmodulin-dependent protein kinase II (CaMKII) is an important sensor of synaptic activity, and the scaffold protein liprinalpha1 is involved in pre- and postsynaptic maturation. Here we show that synaptic activity can suppress liprinalpha1 protein level by two pathways: CaMK...
متن کاملDSCAM contributes to dendrite arborization and spine formation in the developing cerebral cortex.
Down syndrome cell adhesion molecule, or DSCAM, has been implicated in many neurodevelopmental processes including axon guidance, dendrite arborization, and synapse formation. Here we show that DSCAM plays an important role in regulating the morphogenesis of cortical pyramidal neurons in the mouse. We report that DSCAM expression is developmentally regulated and localizes to synaptic plasma mem...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Molecular and cellular biology
دوره 28 8 شماره
صفحات -
تاریخ انتشار 2008